• <abbr id="uoc6q"><source id="uoc6q"></source></abbr>
    <abbr id="uoc6q"></abbr>
  • <dl id="uoc6q"><acronym id="uoc6q"></acronym></dl>

    芬蘭Kibron專注表面張力儀測量技術,快速精準測量動靜態表面張力

    熱線:021-66110810,56056830,66110819,66110690,13564362870 Email: info@vizai.cn

    合作客戶/

    拜耳公司.jpg

    拜耳公司

    同濟大學

    同濟大學

    聯合大學.jpg

    聯合大學

    寶潔公司

    美國保潔

    強生=

    美國強生

    瑞士羅氏

    瑞士羅氏

    當前位置首頁 > 新聞中心

    連接基對3種表面活性劑GSS271、GSS371和GSS471動態表面性能的影響(上)

    來源:印染助劑 瀏覽 579 次 發布時間:2024-12-04

    雙磺基琥珀酸酯磺酸鈉(簡稱GSS)通過柔性連接基將兩個傳統的琥珀酸酯鹽連接而成,連接基使GSS分子中兩個離子頭基間的靜電斥力大大削弱,同時加強了碳氫鏈間的疏水結合力,使GSS具有比單鏈琥珀酸酯磺酸鹽更低的臨界表面張力。


    在實際應用中,很多表面活性劑所需發揮作用的時間極短,例如硬表面清潔、農藥鋪展、印刷、攝影用薄膠片制備、三次采油等都涉及動態過程,因此研究動態表面張力(DST)非常重要。王新英等研究短氟碳鏈季銨鹽表面活性劑時發現,相比以酰胺基為連接基的表面活性劑,以酯基為連接基的表面活性劑有更低的cmc;韓世巖等研究發現,松香基季銨鹽雙子表面活性劑的柔性連接基活性強于剛性連接基;王麗艷等研究烷基咪唑表面活性劑時發現,柔性和剛性連接基對cmc影響不大,因此,有必要深入探究連接基對表面性能的影響。喻紅梅等總結出連接基較短易形成膠束;羅麗娟等得出cmc隨連接基的碳原子數增加先減小后增大;而董樂則發現碳原子數越多,cmc越小。


    為此,有關連接基的研究較多集中在對靜態性能方面的分析,而對動態性能的研究較少。本實驗對自主研發的乙二醇雙子琥珀酸二仲辛酯磺酸鈉(GSS271)、1,3-丙二醇雙子琥珀酸二仲辛酯磺酸鈉(GSS371)與1,4-丁二醇雙子琥珀酸二仲辛酯磺酸鈉(GSS471)陰離子雙子表面活性劑的DST進行研究,并考察連接基對動態表面性能的影響,探討其吸附動力學機理。


    1、實驗


    1.1試劑和儀器

    乙二醇雙子琥珀酸二仲辛酯磺酸鈉(GSS271)、1,3-丙二醇雙子琥珀酸二仲辛酯磺酸鈉(GSS371)、1,4-丁二醇雙子琥珀酸二仲辛酯磺酸鈉(GSS471)(結構式如下,實驗室自制。提純后測定,表面張力曲線無最低點,說明不含高活性雜質),實驗用水均為二次去離子水經亞沸重蒸。


    Delta-8全自動高通量表面張力儀(測量精度為0.05 mN/m,芬蘭Kibron公司),EZ-Pi Plus便攜式動態表面張力儀(芬蘭Kibron公司)。


    1.2測試


    系列濃度表面活性劑水溶液的配制:首先配制10-2mol/L的GSS水溶液作為母液,然后移取適量母液逐級稀釋,得到系列濃度(1×10-5~1×10-2mol/L)溶液(20℃振蕩水浴鍋中恒溫30 min)。


    靜態表面張力:采用表面張力儀由低濃度至高濃度測定系列溶液表面張力γ(測試均在帶有恒溫夾套的玻璃杯中進行,外接數控超級恒溫槽,溫度為20℃),作γ-lg c曲線。


    動態表面張力:采用動態表面張力儀由低濃度至高濃度測定系列溶液動態表面張力(測試均在帶有恒溫夾套的玻璃杯中進行,外接數控超級恒溫槽,溫度為20℃)。


    2、結果與討論


    2.1 GSS水溶液的表面張力


    GSS271、GSS371、GSS471水溶液的靜態與動態表面張力曲線分別見圖1~3。由圖1擬合的表面性能參數見表1。

    表1系列GSS表面活性劑的表面性能


    由表1可知,3種表面活性劑中GSS471的cmc較小,GSS271的cmc與之接近,GSS371的cmc最大。對于GSS371,由于連接基使兩條疏水鏈間的距離增大,導致疏水相互作用減弱,因而cmc較大;GSS371在表面定向排列疏松,在氣液界面置換的水分子較少,因此γcmc較大。連接基較短的GSS271,兩條疏水鏈距離較小,增強了疏水相互作用,cmc小;在表面排列較緊密致使γcmc較小。對于有較長連接基的GSS471,由于連接基的柔性作用使連接鏈扭曲變形而導致兩條疏水鏈更靠近,化學鍵又使極性頭基被強制在較小的距離內,兩種因素均使GSS471疏水能力增強[15],分子更易聚集在一起,因而cmc小;同時在表面排列更緊密,因而γcmc最小。


    當溶液濃度c為1 mmol/L(c<cmc)時,由圖2可知,表面活性劑GSS271、GSS371和GSS471均表現為典型的DST變化曲線,即開始時DST接近溶劑的表面張力,后隨時間延長先快速下降,下降至一定數值后降速緩慢,最后DST基本保持不變。因為吸附剛開始時GSS在新鮮的氣液界面吸附量很少,所以界面張力接近溶劑的表面張力,隨著時間的推移,GSS分子逐漸吸附在界面,氣液界面張力降低;隨著吸附的進行,界面逐步趨于飽和,吸附推動力減小,GSS分子在界面吸附速率下降,因而DST下降緩慢最后趨于介平衡。GSS分子在界面達到飽和后還需進一步吸附與定向排列,因而DST曲線中的介平衡張力較對應濃度下的靜態表面張力大。當溶液濃度為5 mmol/L時,由圖3僅觀察到DST快速下降區和介平衡區。因為濃度較高(c>cmc),開始時便有較多的表面活性劑分子被吸附到表面,所以DST低于溶劑表面張力。


    久久久精品中文字幕麻豆发布 | 婷婷久久香蕉五月综合加勒比| 久久精品国产99久久久| 久久天天躁夜夜躁狠狠躁2020| 九九久久国产精品| 久久精品国产99国产精品导航 | 无码任你躁久久久久久老妇App| 亚洲AV无码一区东京热久久| 亚洲?V乱码久久精品蜜桃| 四虎1515hh永久久免费| 久久国产视频一区| 亚洲中文字幕久久精品无码APP| 色综合久久天天综合观看| 久久国产色AV免费观看| 久久精品国产亚洲香蕉| 久久无码精品一区二区三区| 国产精品福利久久香蕉中文| 久久精品国产亚洲αv忘忧草| 久久久久免费精品国产小说| 国产午夜免费高清久久影院| 无码乱码观看精品久久| 久久天堂av综合色无码专区| 国产精品久久久久久福利69堂| 久久久久久久久女黄9999| 国内精品人妻无码久久久影院| 久久国产午夜精品一区二区三区| 日本三级香港三级久久99| 亚洲国产欧洲综合997久久| 亚洲伊人久久大香线蕉影院| 99久久综合狠狠综合久久一区| 久久国内精品自在自线软件| 久久免费国产精品一区二区| 亚洲中文字幕无码久久精品1| 久久久WWW成人| 国产精品免费久久| 五月婷婷丁香久久| 一本久久综合亚洲鲁鲁五月天| 日日夜夜天天久久| 青草久久久国产线免观| 国产精品久久久久影院| 精品性高朝久久久久久久|