• <abbr id="uoc6q"><source id="uoc6q"></source></abbr>
    <abbr id="uoc6q"></abbr>
  • <dl id="uoc6q"><acronym id="uoc6q"></acronym></dl>

    芬蘭Kibron專注表面張力儀測量技術(shù),快速精準(zhǔn)測量動靜態(tài)表面張力

    熱線:021-66110810,56056830,66110819,66110690,13564362870 Email: info@vizai.cn

    合作客戶/

    拜耳公司.jpg

    拜耳公司

    同濟(jì)大學(xué)

    同濟(jì)大學(xué)

    聯(lián)合大學(xué).jpg

    聯(lián)合大學(xué)

    寶潔公司

    美國保潔

    強(qiáng)生=

    美國強(qiáng)生

    瑞士羅氏

    瑞士羅氏

    當(dāng)前位置首頁 > 新聞中心

    表面活性劑是否對斥水性土壤的潤濕性有影響?——結(jié)論、致謝!

    來源:上海謂載 瀏覽 1428 次 發(fā)布時(shí)間:2021-11-09

    結(jié)論


    不像人工創(chuàng)造的穩(wěn)定的驅(qū)蟲表面或多孔 介質(zhì),拒水土壤表現(xiàn)出潤濕動力學(xué),由此 最初疏水的土壤隨著時(shí)間的推移變得親水 與水接觸時(shí)。 初始潤濕動力學(xué) 排斥土壤通常歸因于 固液界面能 (γSL),或液汽界面能 (γLV) 的降低,或兩者兼而有之。 γLV 的減少 建議是由于土壤表面溶解 活性有機(jī)化合物進(jìn)入與水接觸的水中 土壤。 在這項(xiàng)研究中,我們測試了土傳表面的影響 潤濕動力學(xué)的活性物質(zhì),并發(fā)現(xiàn),與廣為接受的范式相反,土壤釋放表面 活性化合物不會加速潤濕過程。 因此很明顯,固體界面能的變化 表面(γSL 或 γSV),而不是液汽 表面 (γLV) 必須在驅(qū)動不穩(wěn)定排斥性土壤的潤濕動力學(xué)方面起主導(dǎo)作用。


    致謝


    本研究由以色列農(nóng)業(yè)部資助 和農(nóng)村發(fā)展,資助號 821-0088-04。


    參考


    Barrett, G. & Slaymaker, O. 1989. Identification, characterization, and hydrological implications of water repellency in mountain soils, southern British-Columbia. Catena, 16, 477–489.


    Bisdom, E.B.A., Dekker, L.W. & Schoute, J.F.T. 1993. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma, 56, 105–118.


    Chen, Y. & Schnitzer, M. 1978. Surface-tension of aqueous-solutions of soil humic substances. Soil Science, 125, 7–15.


    Dekker, L.W., Oostindie, K. & Ritsema, C.J. 2005. Exponential increase of publications related to soil water repellency. Australian Journal of Soil Research, 43, 403–441.


    Dinar, E., Taraniuk, I., Graber, E.R., Katsman, S., Moise, T., Anttila, T. et al. 2006. Cloud condensation nuclei properties of model and atmospheric HULIS. Atmospheric Chemistry and Physics, 6, 2465–2481.


    Doerr, S.H., Shakesby, R.A. & Walsh, R.P.D. 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51, 33–65.


    Doerr, S.H., Dekker, L.W., Ritsema, C.J., Shakesby, R.A. & Bryant, R. 2002. Water repellency of soils: the influence of ambient relative humidity. Soil Science Society of America Journal, 66, 401–405.


    Ellerbrock, R.H., Gerke, H.H., Bachmann, J. & Goebel, M.O. 2005. Composition of organic matter fractions for explaining wettability of three forest soils. Soil Science Society of America Journal, 69, 57–66.


    Feng, G.L., Letey, J. & Wu, L. 2002. The influence of two surfactants on infiltration into a water-repellent soil. Soil Science Society of America Journal, 66, 361–367.


    Gee, G.W. & Bauder, J.W. 1986. Particle-size analysis. In: Methods of Soil Analysis. Part 1. Monograph No 9 (ed. A. Klute), pp. 383–411.


    American Society of Agronomy, Madison, WI. Graber, E.R., Ben-Arie, O. & Wallach, R. 2006. Effect of sample disturbance on soil water repellency determination in sandy soils. Geoderma, 136, 11–19.


    Hurrass, J. & Schaumann, G.E. 2006. Properties of soil organic matter and aqueous extracts of actually water repellent and wettable soil samples. Geoderma, 132, 222–239.


    Letey, J. 1969. Measurement of contact angle, water drop penetration time, and critical surface tension. In: Proceedings of the Symposium on Water Repellent Soils 6–8 May 1968 (eds L.F. DeBano & J.F. Letey), pp. 43–47. University of California, Riverside, CA. Letey, J., Carrillo, M.L.K. & Pang, X.P. 2000. Approaches to characterize the degree of water repellency. Journal of Hydrology, 231–232, 61–65.


    Ma'shum, M. & Farmer, V.C. 1985. Origin and assessment of water repellency of a sandy South Australian soil. Australian Journal of Soil Research, 23, 623–626.


    Roy, J.L. & McGill, W.B. 2002. Assessing soil water repellency using the molarity of ethanol droplet (MED) test. Soil Science, 167, 83–97.


    Tschapek, M. 1984. Criteria for determining the hydrophilicityhydrophobicity of soils. Zeitschrift fu¨r Pflanzenerna¨hrung und Bodenkunde, 147, 137–149.


    Walkley, A. & Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modifi- cation of the chromic acid titration method. Soil Science, 37, 29–38. Wallach, R. & Graber, E.R. 2007. Effluent irrigation-induced soil water repellency: time dependent variation of infiltration rate and of water repellency at different levels of ambient relative humidity. Hydrological Processes, 21, 2346–2355.


    Wallach, R., Ben-Arie, O. & Graber, E.R. 2005. Soil water repellency induced by long-term irrigation with treated sewage effluent. Journal of Environmental Quality, 34, 1910–1920.


    Wallis, M.G. & Horne, D.J. 1992. Soil water repellency. Advances in Soil Science, 20, 91–140.

    表面活性劑是否對斥水性土壤的潤濕性有影響?——概括、介紹

    表面活性劑是否對斥水性土壤的潤濕性有影響?——材料和方法

    表面活性劑是否對斥水性土壤的潤濕性有影響?——結(jié)果和討論

    表面活性劑是否對斥水性土壤的潤濕性有影響?——結(jié)論、致謝!

    色综合合久久天天给综看| 久久久久久久久久久久久久久| 久久精品亚洲一区二区三区浴池 | 久久亚洲精品成人av无码网站| 日本久久久久久久久久| 久久久久久午夜成人影院| 久久久久九国产精品| 中文字幕无码免费久久99| 久久婷婷五月综合尤物色国产 | 亚洲国产婷婷香蕉久久久久久| 久久天天躁狠狠躁夜夜avapp| 久久亚洲国产精品123区| 亚洲AV成人无码久久WWW| 亚洲乱亚洲乱淫久久| 狠狠综合久久综合88亚洲| 精品久久久久久亚洲中文字幕 | 久久亚洲精品无码av| 久久人人爽人人爽人人AV东京热| 丰满少妇人妻久久久久久| 热久久综合这里只有精品电影| 久久精品国产久精国产思思| 国产一区二区三区久久精品| 合区精品久久久中文字幕一区 | 伊人久久无码中文字幕| 国产精品久久久久国产精品| 精品久久久久久成人AV| 久久综合噜噜激激的五月天| 久久综合图区亚洲综合图区| 91精品国产9l久久久久| 亚洲一区精品伊人久久伊人| 久久国产综合精品SWAG蓝导航| 亚洲av片不卡无码久久| 久久亚洲中文字幕精品有坂深雪| 亚洲AV无码久久精品狠狠爱浪潮| 伊人久久大线蕉香港三级| 久久不见久久见免费影院www日本| 香蕉久久精品国产| 久久6这里只有精品| 2022麻豆福利午夜久久| 久久精品国产亚洲av高清漫画| 亚洲综合婷婷久久|