• <abbr id="uoc6q"><source id="uoc6q"></source></abbr>
    <abbr id="uoc6q"></abbr>
  • <dl id="uoc6q"><acronym id="uoc6q"></acronym></dl>

    芬蘭Kibron專注表面張力儀測量技術,快速精準測量動靜態表面張力

    熱線:021-66110810,56056830,66110819,66110690,13564362870 Email: info@vizai.cn

    合作客戶/

    拜耳公司.jpg

    拜耳公司

    同濟大學

    同濟大學

    聯合大學.jpg

    聯合大學

    寶潔公司

    美國保潔

    強生=

    美國強生

    瑞士羅氏

    瑞士羅氏

    當前位置首頁 > 新聞中心

    表面張力儀分析氣潤濕反轉劑對緩解煤層水鎖效應、解吸速率影響(一)

    來源:煤炭科學技術 瀏覽 123 次 發布時間:2025-03-25

    摘要:為研究氣潤濕反轉劑對緩解煤層水鎖效應,提高煤層瓦斯解吸速度,采用氣潤濕反轉技術改變煤體的潤濕性、降低煤體表面自由能,進而提高瓦斯抽采效率。以0,0.2%,0.5%,0.8%,1%和1.5%的質量分數對2種氣潤濕反轉劑進行稀釋,制備出不同濃度的氣潤濕反轉劑溶液,并將其對煤樣進行處理。首先利用接觸角測量儀和表面張力儀對煤樣進行接觸角和表面張力的測定,驗證兩種表面活性劑的基本特征。然后,在不同吸附平衡壓力條件下,對干燥/含水煤樣的解吸量和解吸速率進行測定,對比氣潤濕反轉劑處理前后的效果差異;同時利用解吸公式進行解吸量的擬合,得到極限解吸量和擬合度大小。研究結果表明:隨著表面活性劑濃度的增加,煤樣表面接觸角逐漸增加、溶液表面張力逐漸減小。在氣潤濕反轉劑濃度達到0.5%時,實現了煤體表面潤濕性的由親水性向疏水性的轉變,且具有較低的表面張力。在2種表面活性劑中,均具有疏水和低表面張力的特點,符合氣潤濕反轉劑的基本特征;在干燥和含水煤樣中,經過氣潤濕反轉劑處理后,1 h內的解吸量和解吸速率均有所提高,其中FC117效果更佳;通過解吸公式對解吸量進行擬合,得到的極限解吸量與1 h內所測定的解吸量變化規律一致,且擬合效果較好,擬合度基本是在0.98以上。通過對氣潤濕反轉劑處理前后煤樣解吸特征的評價,為氣潤濕反轉技術消除煤層“水鎖效應”、提高煤層解吸特征,增加瓦斯抽采效果提供了一定的理論基礎和科學指導。


    引言


    我國作為世界上已知的第三大煤層氣儲量國,總量約3.7×1013 m3,擁有龐大的煤層氣資源。然而,我國煤層“三低一強”——低壓力、低滲透率、低飽和度及非均質性強的特征導致瓦斯采前抽采困難。目前,多數高瓦斯突出礦區采用水力壓裂、水力割縫、水力擠出以及水力沖孔等水力措施作為一種增加煤層透氣性、提高抽采效果的技術措施。


    由于毛細管力引起水鎖效應的產生,在水力化措施研究與應用過程中,在一定程度上抑制瓦斯抽采。從水鎖機理上進行分析,含瓦斯煤為水鎖效應提供了自然條件、物質條件和壓力條件。通過試驗對不同含水率煤樣的解吸時間與滲透率的變化情況進行評價,從中分析煤層氣儲層水鎖損害機理;宋金星等提出壓裂液中加入親水性表面活性劑,減小壓裂液與煤表面的接觸角,降低毛管壓力,增強壓裂液的可排性,進而減緩水鎖效應。然而,親水型表面活性劑僅能在一定程度上減小毛細管力,并未消除毛細管力產生的阻礙作用,甚至實現將毛細管力由阻力向助力的轉變,進而促進瓦斯的抽采;同時,對于孔徑較小的微孔及納米級的孔徑而言,其產生的毛細管力仍較大,不利于瓦斯抽采。


    在凝析氣藏領域,將氣潤濕反轉劑用于解決凝析氣藏出現的水鎖損害,巖心潤濕性實現了反轉,由優先液濕轉變為疏油疏水的優先氣濕,且滲透率大幅度提高,為提高氣井產量提供了重要的理論依據。通過利用氣潤濕反轉技術將固體表面潤濕性進行改變,消除毛細管力產生的水鎖損害,進而增加氣井產量。相比于凝析氣藏的儲層特征,煤層是孔隙結構更加復雜、滲透性更低的多孔介質;同時,煤體又具有親水性的特征。在水力壓裂過程中外在水進入煤體后,產生的水鎖傷害更加嚴重。因此,采用氣潤濕反轉技術提高煤層瓦斯抽采效果具有一定的借鑒性和可行性。


    鑒于此,筆者引入氣潤濕反轉技術,優選具有疏水性、低表面張力的氣潤濕反轉劑,通過接觸角和表面張力的測定,直觀地驗證表面活性劑處理前后的效果轉變。然后測定1 h內不同甲烷平衡壓力下干燥/含水煤樣的甲烷解吸量和解吸速率,定量地分析氣潤濕反轉消除水鎖效應的影響效果。利用解吸公式進行擬合,預測極限解吸量,且擬合效果良好。揭示氣潤濕反轉劑在防水鎖增產的作用機理,為我國煤層瓦斯“增透促抽”技術提供一定的理論依據和指導。


    av午夜福利一片免费看久久| 亚洲精品乱码久久久久66| 精品丝袜人妻久久久久久| 国产69精品久久久久妇女| 99久久国语露脸精品国产| 久久老色鬼天天综合网观看| 久久精品国产亚洲av高清漫画 | 伊人久久大香线蕉综合Av| 人妻精品久久无码区| 国产精品女同一区二区久久| 亚洲精品日韩中文字幕久久久| 狼人久久尹人香蕉尹人| 2022久久国产精品免费热麻豆 | 一本色道久久综合亚洲精品高清 | 性高湖久久久久久久久AAAAA| 日本五月天婷久久网站| 久久久无码精品亚洲日韩按摩| 久久亚洲色WWW成人欧美| 久久夜色精品国产噜噜噜亚洲AV| 九九久久99综合一区二区| 国产精品99久久精品| 久久中文字幕视频、最近更新| 国产精品嫩草久久久久| 久久精品国产999大香线焦| 国产精品久久久久久久app| 中文成人久久久久影院免费观看| 无码国产69精品久久久久孕妇| 激情伊人五月天久久综合| 久久精品国产久精国产思思| 久久国产精品二区99| 三级韩国一区久久二区综合 | 精品久久久久中文字幕一区| 新狼窝色AV性久久久久久| 69精品久久久久| 日本久久久久亚洲中字幕| 久久99国产精品| 久久se精品一区二区国产| 久久国产劲暴∨内射新川| 亚洲av伊人久久综合密臀性色| 亚洲精品无码久久千人斩| 精品免费tv久久久久久久|