合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> LB膜技術(shù)制備納米薄膜保護鋰電池極片的方法【發(fā)明方案】
> 聚氧乙烯鏈長度調(diào)控非離子Gemini表面活性劑的表面張力、接觸角(二)
> ?達因值(表面張力系數(shù))對材料表面性能的影響
> 肺內(nèi)液表面張力的作用、臨床意義及測量方法(二)
> 不同溫度下陰-非離子雙子星座表面活性劑表面張力的變化
> 6種短鏈醇溶液分子結(jié)構(gòu)對表面張力和表面吸附性能的影響
> 產(chǎn)低溫β-甘露聚糖酶的菌株O5提升低溫油藏壓裂液的破膠性能——結(jié)果與討論、結(jié)論
> 過硫酸鉀、K2S2O8對壓裂液破膠性能與表面張力的影響——結(jié)果與討論、結(jié)論
> 氟原子表面張力極低,可提高消泡劑的持續(xù)抑泡效果
> PG木質(zhì)素活性劑增產(chǎn)機理、選井條件、應(yīng)用效果
推薦新聞Info
-
> 影響?yīng)M縫間氫鍵流體氣液平衡界面張力的因素有哪些(三)
> 影響?yīng)M縫間氫鍵流體氣液平衡界面張力的因素有哪些(二)
> 影響?yīng)M縫間氫鍵流體氣液平衡界面張力的因素有哪些(一)
> GA、WPI和T80復(fù)合乳液體系的脂肪消化動力學(xué)曲線、界面張力變化(四)
> GA、WPI和T80復(fù)合乳液體系的脂肪消化動力學(xué)曲線、界面張力變化(三)
> GA、WPI和T80復(fù)合乳液體系的脂肪消化動力學(xué)曲線、界面張力變化(二)
> GA、WPI和T80復(fù)合乳液體系的脂肪消化動力學(xué)曲線、界面張力變化(一)
> 表面張力實驗、接觸角實驗分析抑塵試劑對煤的潤濕結(jié)果
> Kibron表面張力儀研究燒結(jié)礦聚結(jié)行為
> 基于界面張力和表面張力測試評估商用UV油墨對不同承印紙張的表面浸潤性差異(三)
基于藥液表面張力測定估算蘋果樹最大施藥液量的方法(二)
來源: 農(nóng)藥學(xué)學(xué)報 瀏覽 101 次 發(fā)布時間:2025-04-01
2結(jié)果與分析
2.1不同表面活性劑的表面張力
由圖2可以看出:4種供試表面活性劑的表面張力隨其質(zhì)量濃度的增加而下降,當(dāng)下降到一定值時趨于恒定。根據(jù)臨界膠束理論,表面活性劑的表面張力的降低僅出現(xiàn)在溶液質(zhì)量濃度小于臨界膠束濃度(cmc)時,當(dāng)溶液質(zhì)量濃度達到cmc時,表面張力表現(xiàn)為平緩下降或不變。由文獻報道可知,Tween-80、SDS、Triton X-100和SilwetL-77的cmc分別為3.01×10?2、2.48×10?3、1.32×10?4和8×10?4 g/mL。對照本研究結(jié)果發(fā)現(xiàn),Tween-80的最高質(zhì)量濃度并未超過其cmc值,SDS、Triton X-100和SilwetL-77的cmc值分別是1×10?3、2×10?4和5×10?4 g/mL。
圖2 4種供試表面活性劑表面張力隨其質(zhì)量濃度變化的趨勢
2.2不同表面活性劑在蘋果葉片表面的最大持液量
表1為水在不同蘋果葉片傾角下的Rm值,可以看出,生長前期蘋果葉片近、遠(yuǎn)軸面的Rm值明顯高于生長后期,其原因可能與葉片表面蠟質(zhì)層分布有關(guān)。有研究表明,隨著葉片的生長其表面蠟質(zhì)層會不斷增厚,葉片疏水性逐漸增強,且同時期的遠(yuǎn)軸面的Rm值高于近軸面,其原因可能是蘋果葉片遠(yuǎn)軸面附有大量絨毛,極易刺破水滴表面,使水滴侵入毛刺基地部位,起到阻止藥液流失的作用。
表1水在蘋果葉片近、遠(yuǎn)軸面的Rm值
圖3為不同質(zhì)量濃度下Tween-80溶液在蘋果葉片近、遠(yuǎn)軸面的Rm變化規(guī)律。由圖可知,生長前、后期不同傾角下蘋果葉片的Rm值和表面張力均隨Tween-80質(zhì)量濃度的升高不斷減小。當(dāng)溶液質(zhì)量濃度接近cmc時,表面張力基本不變,蘋果葉片Rm值也趨于恒定。
圖3 Rm及表面張力隨Tween-80溶液質(zhì)量濃度的變化
圖4為不同質(zhì)量濃度SDS溶液在蘋果葉片近、遠(yuǎn)軸面的Rm變化規(guī)律。由圖可知,蘋果葉片近、遠(yuǎn)軸面Rm值和表面張力均隨葉片傾角的增大而減小。當(dāng)SDS溶液質(zhì)量濃度接近和超過cmc時,Rm值趨于恒定。
圖4 Rm及表面張力隨SDS溶液質(zhì)量濃度的變化
圖5為不同質(zhì)量濃度Triton X-100溶液在蘋果葉片近、遠(yuǎn)軸面的Rm變化規(guī)律。從中可以看出,不同傾角下蘋果葉片生長前期近、遠(yuǎn)軸面的Rm值和表面張力均隨溶液質(zhì)量濃度的升高而不斷減小,當(dāng)Triton X-100溶液質(zhì)量濃度達到cmc時,近軸面Rm值與表面張力的變化趨于平緩,而遠(yuǎn)軸面的Rm值則出現(xiàn)大幅波動。其原因可能與Triton X-100表面活性效率高(cmc=1.32×10?4 g/mL)有關(guān),同時溶液色散分量占比會隨溶液質(zhì)量濃度的升高而提高,而對蘋果葉片遠(yuǎn)軸面表面自由能起主導(dǎo)作用的也是色散分量,以上多重因素導(dǎo)致遠(yuǎn)軸面的Rm值產(chǎn)生波動。蘋果葉片生長后期Rm與表面張力隨溶液質(zhì)量濃度的變化與生長前期相似。
圖5 Rm與表面張力隨Triton X-100溶液質(zhì)量濃度的變化
圖6為不同濃度SilwetL-77溶液在蘋果葉片近、遠(yuǎn)軸面的Rm變化規(guī)律。由圖可知,當(dāng)溶液質(zhì)量濃度低于cmc時,蘋果葉片生長前、后期遠(yuǎn)軸面的Rm值和表面張力均隨溶液質(zhì)量濃度的降低而減小。此外,蘋果葉片生長后期近軸面只有在30°傾角時的Rm值與表面張力隨溶液質(zhì)量濃度的提高而減小,60°傾角和90°傾角時Rm值隨溶液濃度變化不大。蘋果葉片生長后期遠(yuǎn)軸面Rm值和表面張力隨溶液濃度的變化與生長前期基本一致。
圖6 Rm值及表面張力隨Silwet L-77溶液質(zhì)量濃度的變化
以上結(jié)果表明,蘋果葉片生長前期近軸面的Rm值高于生長后期,且在同一生長期,蘋果葉片遠(yuǎn)軸面的Rm值遠(yuǎn)高于近軸面。此外,蘋果葉片的Rm值隨葉傾角的增大而減小。